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Abstract
The metal-based drugs represented by cisplatin, carboplatin,
and oxaliplatin, prevail in cancer treatment, whereas new
therapeutics are extremely slow to step into the clinic. Poor
pharmacokinetics, multidrug resistance, and severe side ef-
fects greatly limit the development of metal-based anticancer
drugs. The robustness and modular composition of supramo-
lecular coordination complexes allow for the incorporation of
novel diagnostic and therapeutic modalities, showing prom-
ising potentials for precise cancer theranostics. In this mini
review, we highlight the recent advances in the development of
supramolecular coordination complexes as diagnostic and
therapeutic agents. The key focuses of these reports lie in
searching sophisticated coordination ligands and nano-
formulations that can potentially solve the issues faced by
current metal-based drugs including imaging, resistance,
toxicity, and pharmacological deficiencies.
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Introduction
Cancer is fast becoming the leading cause of death
worldwide, placing a heavy burden on patients, their
families, and society [1e4]. Sophisticated drugs or
nanoformulations that can specifically kill cancer cells,

yet biocompatible to the normal tissues, are urgently
needed for cancer patients. However, this goal is
currently out of reach because of the considerable vari-
ations among tumor subpopulations and individuals
[5,6]. Theranostics that integrates therapeutic and
diagnostic capabilities into a single platform potentially
meets the challenges for the next generation of
personalized medicine. In these platforms, the diag-
nostic component reports the presence of tumors, their
status, and their response to therapy, providing impor-
tant information for the subsequent precise treatments

[7e12]. However, such advances so far are mostly
confined to the academic settings, with the majority of
the reported theranostics incorporating the imaging and
therapy independently rather than in an integrated
platform, mismatching the diagnostic and therapeutic
outputs. In addition, the therapeutic performances of
the present drugs or nanomedicines are unsatisfactory in
the clinic, prompting researchers to construct smart
formulations synergistically combining multiple thera-
peutic modalities.

Since the serendipitous discovery of the anti-
proliferative capability of cisplatin by Barnett Rosenberg
et al. in 1965, much effort has been devoted to exploring
potent drugs on the basis of metal complexes for
oncology therapy [13]. A large number of transition
metal complexes including palatinum (PtII and PtIV),
gold (AuI and AuIII), titanium (TiIV), and ruthenium
(RuII and RuIII) have been extensively studied and
evaluated, and some of them have entered clinical
studies at different stages [13e16]. Still, most of these
emerging therapeutic agents have encountered obsta-

cles, such as low water solubility, poor pharmacological
behaviors, unsatisfactory efficacy, severe side effects,
and drug resistance. Fortunately, some of these draw-
backs can be effectively solved by fully exploiting su-
pramolecular coordination chemistry and
nanotechnology using these therapeutic metal
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20 Bioinorganic Chemistry
complexes as building blocks [17e20]. Through the
judicious choice of organic ligands and metal ions/clus-
ters, discrete supramolecular coordination complexes
(SCCs) with fascinating topologic structure have been
fabricated via coordination-driven self-assembly [21,22].
More interestingly, diagnostic capability can be
Figure 1

(a) Chemical structures of the boron dipyrromethene (BODIPY)-modified Pd2
(CLSM) images of the cells culture with 1 and 2. Reproduced with permission
structures of the BODIPY-embedded metallacycles (3–6) and the CLSM imag
by Gupta et al. [26], copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA,
Illustration of crosslinked polymers constructed from the emissive TPE-based m
the nanomaterial prepared from the polymer (P2). Reproduced with permissio
Sciences. (f) Chemical structure of the porphyrin-based metallacycle (8). (g)
metallacage-loaded nanoformulations. Reproduced with permission from the
boron dipyrromethene; MRI, magnetic resonance imaging; NIR, near-infrared
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introduced into these SCCs by using imaging probes as
the coordination donors, facilitating noninvasive moni-
toring of the delivery, release, and excretion of the
organometallic drugs with the assistance of fluorescence
imaging, magnetic resonance imaging, positron emission
tomography, or photoacoustic imaging [23,24]. By
L4 metallacages (1 and 2) and the confocal laser scanning microscope
from the study by Woods et al. [25], copyright 2019 Elsevier. (b) Chemical
es of the cells cultured with 5. Reproduced with permission from the study
Weinheim. (c) Chemical structure of the TPE-based metallacycle (7). (d)
etallacycle. (e) The in vivo fluorescence image of the mouse injected with

n from the study by Zhang et al. [35], copyright 2016 National Academy of
NIR fluorescence, PET, and MRI images of the mice injected with the
study by Yu et al. [37], copyright 2018 Nature Publishing Group. BODIPY,
; PET, positron emission tomography; TPE, tetraphenylethane.
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Supramolecular Theranostics Yu et al. 21
integrating other therapeutic agents into the SCCs, the
anticancer properties of the resultant formulations are
vastly improved by combining chemotherapy with
photodynamic therapy (PDT) and photothermal ther-
apy. Herein, we highlight the recent developments of
SCCs in cancer theranostics aiming to point out some
pivotal tendency in potential applications of the re-
ported supramolecular structures.
Incorporation of diagnostic functions into
SCCs
The inspiration for the employment of SCCs in
biomedical applications arises from their awesome

merits of (i) the ease of fine-tuning the topological
structures of the coordination complexes, (ii) the
plentiful choices of metal ions or clusters with change-
able sizes and angles, (iii) the feasible integration of
specific agents with fascinating functions via pre-
modifications or postmodifications. Imaging probes can
be incorporated into SCCs for in vitro and in vivo imaging
to trace their delivery and excretion. Various strategies
have been exploited to achieve this goal, such as
chemical modification, direct coordination self-
assembly, physical encapsulation, and hosteguest
recognition.

Fluorophores with high quantum yield (QY) could be
conjugated to the coordination building block, thus
introducing imaging capability into SCCs. For example,
Woods et al. [25] conjugated highly emissive boron
dipyrromethene (BODIPY) moieties to the 3,5-bis(3-
ethynylpyridine)phenyl scaffold and obtained lumines-
cent Pd2L4 metallacages (1 and 2). The bright fluores-
cence arising from BODIPY allowed for monitoring the
cellular uptake and subcellular localization of the
metallacages and found that the internalization was

driven by active transportation and the metallacages
accumulated in cytoplasmic vesicles (Figure 1a).

Fluorescent probes with rigid structures are inherent
coordination donors when modified with carboxylate or
pyridine groups, such as BODIPY, tetraphenylethane
(TPE), and porphyrins. Gupta et al. [26] constructed
thiophene-based BODIPY Ru(II) rectangles (3e6)
using dinuclear arene-ruthenium precursors and a
thiophene-functionalized dipyridine BODIPY ligand,
and the intracellular distribution of this metallacycle

was visualized by the net fluorescence of BODIPY
(Figure 1b). Pd(II)- and Pt(II)-cornered square-planar
complexes were also used by Gupta et al. [27] and Zhou
et al. [28] to fabricate BODIPY-based fluorescent tri-
angles and rectangles. The characteristic fluorescence of
the BODIPY cores allowed intracellular visualization of
these metallacycles by using a confocal microscope. Ma
et al. [29] constructed three highly fluorescent metal-
lacycles utilizing a near-infrared (NIR)eemissive
dipyridyl ligand and Pt(II) precursors with different
www.sciencedirect.com
shapes. Interestingly, the formation of D-p-A structures
due to the introduction of two electron donors to the
cyanostilbene-based backbone shifted the emission of
the ligand to 735 nm. These metallacycles combining
both imaging and therapeutic abilities offered a new
type of theranostics toward cancer management.
Notably, the anticancer ability of the metal-acceptors
was greatly maintained by the formation of SCCs, the

IC50 values of these SCCs were comparable with or even
lower than cisplatin.

Different from traditional fluorophores suffering from
aggregation-caused quenching, TPE derivatives exhibit
a unique aggregation-induced emission (AIE) phenom-
enon at concentrated states through the restriction of
intramolecular rotation [30,31]. Interestingly, the
intramolecular rotation could be hindered by the for-
mation of SCCs through coordinations, making the
metallacomplexes highly emissive even in diluted states

[32e34]. Zhang et al. [35] prepared a rhomboidal TPE-
based metallacycle (7) and further crosslinked the
fluorescent metallacycle-cored polymers via bifunc-
tional covalent linkages (Figure 1c and d). Benefiting
from the AIE effect, nanoparticles prepared from these
supramolecular polymers were used as contrast agents
for cell imaging and in vivo fluorescence imaging
(Figure 1e). Yu et al. [36] synthesized a TPE-based
metallacage via multiple-component coordination,
exhibiting bright emission as a result of AIE effect. The
stability of this theranostic SCC was significantly

improved by encapsulation into the nanoparticles
formed from two lipidepolymer conjugates. The de-
livery process was detected in real-time by exploiting
the AIE feature of this metallacage. Based on both
enhanced penetration permeability and retention
(EPR) effect and active targeting ability, this nano-
medicine highly accumulated in tumor tissue, which
enhanced antitumor efficacy and reduced systemic
toxicity.

Porphyrin is a classic fluorophore, while the fluorescence
is remarkably quenched by the p-p stacking of the hy-

drophobic core. Although various modifications have
been conducted by introducing water-soluble segments
aiming to improve their solubility, it remains a challenge
to realize single molecular dispersion. Yu et al. [37]
inserted 5,10,15,20-tetra(4-pyridyl)porphyrin (TPP)
into the metallacage (8) as top and bottom faces through
a multicomponent coordination-driven self-assembly
(Figure 1f). The distance between the fluorophores was
mechanically elongated. In this way, the intermolecular
p-p stacking of TPP was remarkably suppressed,
significantly enhancing the fluorescence. Metallacage-

loaded nanoparticles were obtained, and their in vivo
delivery was traced by NIR fluorescence imaging. More
intriguingly, the porphyrin cores of the metallacage were
suitable hosts for magnetic Mn2þ and radioactive
64Cu2þ ions, which allowed the implementation of
Current Opinion in Chemical Biology 2021, 61:19–31
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22 Bioinorganic Chemistry
magnetic resonance imaging and positron emission to-
mography imaging with high sensitivity and resolution
(Figure 1g). The nanoparticles with trimodality imaging
allowed precise diagnosis of tumors and tracing of the
delivery, organ distributions, and excretion of the
nanoparticles.

NIR-II imaging holds promise to provide information of

tumor location and progression attributing to its low
interfering signal, deep penetration, and the high signal-
to-background ratio. Inspired by these superb merits
from the NIR-II over the NIR-I window for in vivo im-
aging, Sun et al. [38] developed a series of theranostics
through physical encapsulation. For example, ternary
theranostic nanoparticles comprising of a rhomboidal
metallacycle, a NIR-II probe and an amphiphilic
copolymer were prepared [38]. This theranostic system
possesses excellent photostability for accurate diagnosis
Figure 2

(a) Structures of discrete metallacycle 9 and NIR-II molecular dye 10. (b) NIR
tumors at different times post tail vein injection of NP1. (c) The schematic dia
Reproduced with permission from the study by Sun et al. [40], copyright 2019
crystal structure of [ReO43C-2]11+. (f) SPECT images of the mice injected w
permission from the study by Burke et al. [44], copyright 2018 American Chem
tomography.
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of cancer with high resolution and signal-to-noise ratios.
Similarly, a nanococktail was prepared by loading an
organic NIR-II dye and an organoplatinum(II) metalla-
cycle into the polymeric nanoparticles self-assembled
from Pluronic F127 [39]. This nanococktail exhibited
high photostability and negligible background in the
NIR-II region, showing unparalleled advantages for real-
time monitoring the process of therapy. Moreover, the

same group also engineered a dual-modal theranostic
nano-agent by incorporating discrete Pt(II) metallacycle
(9) and NIR-II dye (10) into multifunctional melanin
dots (Figure 2a) [40]. Both NIR-II imaging and photo-
acoustic imaging confirmed accumulation of the nano-
agent (NP1) in the tumor region (Figure 2b), which
allowed for image-guided chemophotothermal therapy
(Figure 2c). It should be emphasized that the coordi-
nation self-assembly and nanoformulations did not
diminish the anticancer activity of the
-II fluorescence and photoacoustic images of the mice bearingU87MG
gram of nanotheranostic NP1 for chemophotothermal synergistic therapy.
National Academy of Sciences. (d) Chemical structure of C-2. (e) Single-
ith free [99mTc]TcO4

− and [99mTc][TcO43C-2]11+. Reproduced with
ical Society. NIR, near-infrared; SPECT, single-photon emission computed
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organoplatinum(II) precursors in these cases, and
additional photothermal therapy arising from the car-
riers even elevated the therapeutic efficacy.

Metallacages with hollow cavity are able to complex
diagnostic guests, making the hosteguest recognition an
effective method to visualize the metallacages. Freu-
denreich et al. [41] and Garci [42] constructed water-

soluble arene-ruthenium metallacages and used them
as supramolecular hosts to encapsulate hydrophobic
porphin. The cellular endocytosis of the supramolecular
complexes and release of porphin after internalization
Figure 3

(a) Chemical structures of the Ru-based metallacycles (11 and 12). Reprodu
Elsevier. (b) Chemical structures and cartoon illustration of the preparation of
Vajpayee et al. [46], copyright 2011 American Chemical Society. (c) Chemica
permission from the study by Mishra et al. [51], copyright 2014 Wiley-VCH V
metallacycles (16 and 17) and metallacage (18) self-assembled from the 0� R
permission from the study by Zhao et al. [52], copyright 2019 National Academ
19 and 20 as building blocks. Reproduced with permission from the study by

www.sciencedirect.com
into the cells were fully investigated by fluorescence
imaging. Yu et al. [43]also used a discrete organo-
platinum(II) metallacage with a well-defined cavity as a
supramolecular host to load octaethylporphine and
further encapsulated the hosteguest complex into
polymeric nanoparticles for fluorescence image-guided
chemophotodynamic therapy. Burke et al. [44] synthe-
sized a tetrahedral CoIII4L6 (C-2), which exhibited high

binding affinity towards g-emitting [99mTc]TcO4
e anion

(Figure 2d). The association constant was as high as
61,000 M�1 between this metallacage host and
pertechnetate analog (perrhenate, ReO4

e) (Figure 2e).
ced with permission from the study by Gupta et al. [45], copyright 2015
metallacycle (13 and 14). Reproduced with permission from the study by
l and single-crystal structure of the metallabowl (15). Reproduced with
erlag GmbH & Co. KGaA, Weinheim. (d) Chemical structures of the
u clip and ditopic/tritopic imidazole-based ligands. Reproduced with

y of Sciences. (e) Illustration of the self-assembly of the hexagon (21) using
Yue et al. [56], copyright 2018 Royal Society of Chemistry.
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Subsequent single-photon emission computed tomog-
raphy imaging indicated that the capsule remained
intact during imaging (Figure 2f). Compared with the
thyroid accumulating free oxo-anion, in vivo imaging also
indicated dramatic variations in the distributions of the
complex.
SCCs for cancer therapy
By using Pt, Pd, Rh, Ru, and Ir as the coordination ac-
ceptors, Therrien, Stang, Chi, Casini et al. developed a
series of two dimensional metallacycles (e.g. triangles,
rectangles, rhomboids, and hexagons) and 3D metal-
lacages for cancer therapy [24]. These SCCs exhibited

antiproliferative effects against various cancer cell lines.
The potency of partial SCCs is similar to and, in some
cases, even better than the commercially used cisplatin,
carboplatin, and oxaliplatin. The anticancer mechanisms
of these SCCs mainly include membrane damage,
autophagy, DNA damage, cell apoptosis, andincreased
p53 expression.

Biological activity of Ru-based complexes prompt anal-
ogous studies of Ru(II)-arene SCCs with particular in-
terest in their anticancer performance. Supramolecular

Ru(II) metallacycles displayed some exciting advan-
tages, such as relatively high solubility and stability in
aqueous solution. Gupta et al. [45] designed Ru(II)-
arene metallarectangles (11 and 12) that showed
exciting potency to cancer cells rather than normal cells.
These metallacycles were highly toxic against human
ovarian cancer cells (Figure 3a) [45]. Vajpayee et al. [46]
Figure 3b). Various Ru(II)-arene metallabowls, Ru(II)-
arene [2] catenane, and 3D Ru(II) metallacages have
been constructed, and their antiproliferative capabilities
were evaluated against a panel of cancer cells [47e51].
The metallabowl (15) featuring 5,8-dihydroxy-1,4-

naphthaquinonato ligands was twice as potent as doxo-
rubicin (DOX) and cisplatin against HCT-15 cells
(Figure 3c) [51]. Zhao et al. [52] synthesized a series of
Ru(II)-arene rectangles (16 and 17) and trigonal prisms
(18) self-assembled from bidentate or tridentate
imidazole-based ligands with p-cymene ruthenium (II)
acceptors (Figure 3d). In vitro anticancer studies
demonstrated that only the SCCs containing 5,8-
dihydroxy-1,4-naphthaquinonatoebased scaffolds
exhibited satisfactory effect. The screened SCCs
displayed pronounced selectivity for HepG-2 cells over

the healthy cells.

Mishra et al. [53] prepared two tetracationic Pt(II) and
Pd(II) metallacycles from an N,N0- bis(4-[pyridin-4-
ylethynyl]phenyl)pyridine-2,6-dicarboxamide and cis-
blocked metal complexes. Both metallacycles exhibited
antiproliferative effect, especially for the Pt(II) metal-
lacycle, which was more potent than cisplatin against
head and neck and thyroid cancer cells, while less toxic
against normal cells. Gupta et al. [27] reported Pd(II)-
Current Opinion in Chemical Biology 2021, 61:19–31
based supramolecule complexes with triangular/square
architectures using BODIPY derivatives as ligands.
Notably, these SCCs were more potent against glio-
blastoma cells than normal lung fibroblasts, and their
anticancer efficacy was even higher than that of cisplatin
against the glioblastoma cells. McNeill et al. [54]
investigated the influence of different ligands on the
biological activity of Pd2L4 helicates. Their study

showed that the antiproliferative results of the SCCs
were correlated with the stability in biological media.
Among them, Pd2L4 (L = 1,3-bis-hexane triazole
phenyl) helicates possessed the highest anticancer
effect, e.g. it was seven-fold more potent than cisplatin
against resistant MDA-MB-231 cells. The anticancer
mechanism of this SCC is also different from that of
cisplatin through DNA crosslinks; it triggers cell
apoptosis by disrupting the cell membrane.

Attributing to their inherent anticancer capability,

platinum-based complexes have attracted extensive at-
tentions over the past decades. Stang et al. developed
large libraries of mononuclear and multinuclear plat-
inum acceptors with different angles and sizes and
further constructed a large number of metallacycles and
metallacages [24]. In vitro and in vivo evaluations
confirmed excellent anticancer output of these SCCs
against various cancer cell lines. For example, Grishagin
et al. [55] designed a endohedral amine-functionalized
rhomboid using 2,6-bis(pyrid-4-ylethynyl) aniline and
2,9-bis(trans-Pt[PEt3]2NO3) phenanthrene as building

blocks. In vivo antitumor evaluations indicated that the
mice treated with this metallarhomboid resulted in a
substantial 64% reduction of the tumor burden.
Recently, Yue et al. [56] reported a Pt3L3 hexagon (21)
through the coordination between a Pt(IV) prodruge
conjugated dipyridyl ligand (19) and a bidentate ligand
(20) (Figure 3e). Through this supramolecular method,
three equivalents of cisplatin could be delivered into the
cancer cells by the reduction of the Pt(IV) prodrug.
Compared with free cisplatin, higher cellular uptake was
realized for the metallacycle, effectively improving the
anticancer efficacy against a range of cancer cells. To

improve the anticancer results and overcome drug
resistance, other therapeutic modalities were intro-
duced into the SCCs through covalent and noncovalent
ways. For example, Zhou et al. [28], Zhou et al. [57,59]
and Yao et al. [58] reported the preparation of metalla-
cycles containing porphyrin-based, Ru complex-based,
or BODIPY-based photosensitizers. The combination
of chemotherapy and PDT greatly enhanced the anti-
cancer performance of these metallacycles. Apart from
metallacycles and metallacages, metallohelices with
different topological structures and mechanisms of

action were developed and applied as anticancer agents.
For example, Brabec et al. [60] used Fe as the coordi-
nation acceptor to prepare a series of M2L3 helicates,
which exhibited higher potency than cisplatin against
HCT116 p53þ/þ cell line in nM range. They pointed out
www.sciencedirect.com

www.sciencedirect.com/science/journal/13675931


Figure 4

(a) Self-assembly of the metallacycle (M). (b) Illustration of the controllable 1O2 generation M and nanoparticles. (c) Illustration of nanomedicine delivery
followed by the EPR effect and PDTeffect. Reproduced with permission from the study by Qin et al. [63], copyright 2019 American Chemical Society. (d)
Chemical structures of the building blocks (HPPB, DSTP, cPt, OEP, N3-PEG-b-PLBG, and cRGDfK-DBCO) and cartoon illustration of the nanomedicine
preparation. Reproduced with permission from the study by Yu et al. [43], copyright 2019 National Academy of Sciences. EPR, enhanced penetration
permeability and retention; PDT, photodynamic therapy.
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the binding strength and number of binding sites of
metallohelices played important roles in the interaction
with oligonucleotide duplexes with bulges, and these
interactions were dependent on the size of the bulge
that finally determine their efficacy. Faulkner et al. [61]
further reported the preparation of the stereoselective
asymmetric metallohelices possessing antiparallel head-
to-head-to-tail ‘triplex’ strand arrangement. Interest-

ingly, these self-assemblies exhibited structure-
dependent anticancer activity against the HCT116
p53þþ cell line, remarkably changing the cell cycle while
merely damaging the DNA structures.
Nanoformulations fabricated from SCCs
For in vivo antitumor applications, the stability in the
physiological environment and pharmacokinetic behav-
iors of the SCCs should be optimized to improve effi-
cacy while reducing side effects. Nanotechnology was
used to overcome the barriers faced by SCCs during
their delivery and action processes. Yu et al. [62]
encapsulated an AIE metallacage into nanoparticles as
cancer theranostics. Attributing to the EPR effect and
targeting ability, the circulation time of the nano-
medicine was greatly prolonged and its tumor accumu-

lation was significantly increased. This nanomedicine
exhibited better antitumor results than those of the
commercial platinum-based drugs including oxaliplatin,
carboplatin, and cisplatin. The administration of nano-
medicine achieved more durable tumor suppression and
apoptosis of tumor cells, while the side effects of the
chemotherapeutic agents toward normal tissues were
much reduced. Stang and coworkers conjugated gluta-
thione-responsive copolymers to an AIE metallacycle to
afford an amphiphilic drug carrier [62]. Nanoparticles
self-assembled from this material were able to load
neutral DOX in the hydrophobic cores. A dual-respon-

sive drug release was achieved because of the degrada-
tion of the carrier triggered by the high glutathione and
the protonation of the DOX by the low pH inside cancer
cells. In vivo studies confirmed that the NPs 50 nm in
diameter were capable of codelivering platinum-based
anticancer drugs and DOX in a synergistic pattern,
which effectively suppressed tumor growth. Sun et al.
[38,40] and Ding et al. [39] co-loaded metallacages and
NIR probes into the polymeric nanoparticles and
melanin dots for tumor diagnosis and NIR-II image-
guided therapy. Attributing to the sophisticated design

and advantages from nanotechnology, the therapeutic
efficacy of these theranostic systems was greatly
improved; the tumors were completely ablated by the
chemophotothermal synergistic therapy.

Qin et al. [63] controlled the generation of singlet
oxygen (1O2) by light through the conjugation of
porphyrin (22) and diarylethene moieties (23) to a
Current Opinion in Chemical Biology 2021, 61:19–31
metallacycle (M) (Figure 4a). In this light-responsive
dual-stage metallacycle, the production of 1O2 was
completely inhibited while the diarylethene groups
were in the ring-closed form (C-M), while efficient
generation of 1O2 was realized when these units were
converted to the ring-open form (O-M) (Figure 4b).
The metallacycle was further encapsulated by
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
methoxy(polyethylene glycol) (mPEG-DSPE) to
obtain a nanomedicine, which allowed for efficient de-
livery to cancer cells through EPR effect (Figure 4c).
The switchable dual-stage nanomedicine was able to
ablate the tumors through controllable light irradiation.

Biological activity of Ru-based complexes prompt anal-
ogous studies of Ru(II)-arene SCCs with particular in-
terest in their anticancer performance. Supramolecular
Ru(II) metallacycles displayed some exciting advan-
tages, such as relatively high solubility and stability in

aqueous solution. Therrien et al. designed Ru(II)-arene
metallarectangles (11 and 12) that showed exciting
potency to cancer cells rather than normal cells. These
metallacycles were highly toxic against human ovarian
cancer cells because of the severe p-p stacking. As
discussed above, the TPP-based metallacage developed
by Yu et al. [37] overcame this obstacle, greatly
improving the 1O2 generation QY by increasing the
intersystem crossing efficiency of the photosensitizer.
PEGylation of the metallacage by mPEG-b-PEBP and
RGD-PEG-b-PEBP endowed the nanomedicine with

prolonged blood circulation time and less nonspecific
tissue uptake. This nanoformula had a phototoxicity
index as high as 246, indicating that the phototherapy
could be spatiotemporally controlled by the laser. In vivo
studies demonstrated the combination of chemo-
therapy, and PDT possessed outstanding anticancer
performances in fighting against U87MG, drug-resistant
A2780CIS, and orthotopic tumors, effectively prevent-
ing tumor recurrence and metastasis after a single
treatment. Yu et al. [43] used a discrete metallacage
(24) as a supramolecular host to complex a photosensi-
tizer (OEP) through hosteguest chemistry to form a

dual functionalized system, which was further encap-
sulated into the nanoparticles to afford a nanomedicine
(Figure 4d). This nanoformulation specifically delivered
the chemotherapeutic drug and photosensitizer to
cancer cells, realizing synergistic effect against the drug-
resistant cancer cells. In vivo antitumor studies
confirmed that the combination of chemotherapy and
PDT eradicated the drug-resistant tumors, confirming
the superior antitumor ability of this nanomedicine.
Compared with other delivery vehicles, the excellent
compatibility and biodegradability of the polymeric

carriers used in these supramolecular systems make
these nanomedicines more likely to be clinically
translatable.
www.sciencedirect.com
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Host–uest chemistry using cucurb
Chemotherapy often results in tumor relapse and drug

resistance, which are the main obstacles to improving
life quality and prolonging survival of the patients. The
cocktail strategy combining different drugs with distinct
anticancer mechanisms is an attractive choice to boost
anticancer results. Three-dimensional SCCs with
unique cavities are interesting supramolecular hosts,
which are able to complex with diagnostic or therapeutic
guests through hosteguest recognitions, thus realizing
synergistic therapeutic efficacy. Zheng et al. [64]
developed a well-defined M6L4 metallacage (25) and
used it as a drug delivery system (Figure 5a). Hoste
guest complexation between the cage and adamantyl
groups derived association of four Pt(IV) prodrugs (26)
within each cage. The highly positive charge of the
Figure 5

(a) Illustration of the host–guest complexation between the Pt(IV) prodrug (26
Zheng et al. [64], copyright 2015 Royal Society of Chemistry. (b) Illustration of t
between 25 and fluorescein and chromatic change of fluorescein upon bindin
et al. [65], copyright 2018 Royal Society of Chemistry.
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hosteguest complex facilitated cellular internalization.
Active cisplatin was efficiently released inside the
cancer cells through a reduction reaction by biological
reductants such as ascorbic acid, thus activating the
anti-cancer ability. Yue et al. [65] constructed another
hosteguest complex using this cage as the host and a
Pt(IV) prodrug (27) with a fluorescein tail as the guest
in a 1:1 ratio with mM dissociation constants (Figure 5c).

The inclusion complex was loaded into the nano-
particles using an anionic block copolymer (28) via
electrostatic interactions (Figure 5b). The active anti-
cancer drug released slowly from the nanoparticles, and
the efficacy of this nanoformulation (half-inhibition
concentration, IC50 = 5.02 � 0.67 mM) was comparable
with cisplatin (IC50 = 2.95 � 0.42 mM) against HeLa
cells. The introduction of targeting ligands on the SCCs
) and the metallacage (25). Reproduced with permission from the study by
he nanoformulation strategy. (c) Illustration of the host–guest complexation
g to the metallacage. Reproduced with permission from the study by Yue
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Figure 6

(a) Chemical structure of the Pd12L24 metallacage 30 and the prodrug 31. (b) Cartoon illustration of the host–guest complexation. Reproduced with
permission from the study by Samanta et al. [68], copyright 2016 American Chemical Society. (c) Chemical structure of the building blocks and cartoon
illustration of the host–guest complexation. Reproduced with permission from the study by Datta et al. [69], copyright 2018 National Academy of Sci-
ences. DOX, doxorubicin.
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was a direct choice to elevate their therapeutic efficacy
while alleviate the systemic toxicity by optimizing the
biodistributions. Han et al. [66] modified the organic
ligands by targeting groups for integrin avb3 or a5b1
without affecting their coordination self-assembly. The
IC50 value of cisplatin decreased to half of the pristine
drug by the formation of the hosteguest complex with
the resultant Pd2L4 metallacage with the ability to

deliver chemotherapeutics to A375 cells overexpressing
avb3 integrins. Ex vivo measurements further the hep-
atotoxicity and nephrotoxicity of cisplatin were attenu-
ated on the basis of supramolecular chemistry and the
active targeting strategy.

Yu et al. [43] and Therrien [67] developed 3D Ru(II)
and Pt(II) metallacages and, respectively, used them as
hosts to complex porphyrin-based photosensitizers.
The metallacages not only protected the photosensi-
tizers from light during the transport, but also facili-

tated their delivery to cancer cells. The hosteguest
recognition improved the dispersion of photosensi-
tizers in physiologic environment, thus realizing syn-
ergistic anticancer effect to overcome drug resistance
encountered by the platinum-based drugs. Samanta
et al. [68] and Datta et al. [69] conjugated 4,40-bipyr-
idinium to the metallacages and used these platforms
as supramolecular guests (Figure 6). The prodrug or
active drug could be loaded through hosteguest
chemistry using cucurbit[8]uril (CB8) as the host by
forming 1:1:1 ternary complexes (Figure 6b and c).

In vitro studies demonstrated these supramolecular
systems displayed exciting anticancer results. For
example, the inclusion complex displayed w100-fold
anticancer efficacy relative to free curcumin against
various cancer cell lines, including C32, B16F10, MCF-
7, and MDA-MB231 [69].
Conclusion
The past decades have witnessed the progress of SCCs
in biomedical applications, especially in cancer thera-
nostics. By regulating the functions of the individual
building blocks and the geometry of their linkages,
diverse nanomaterials with unique and enhanced prop-
erties can be prepared. The bioactive nature of the
metals or metal complexes also determine the final
functions of the SCCs, for example, the widely used Pt
and Ru precursors hold excellent anticancer ability.

Imaging probes can be incorporated into the SCCs,
making the delivery and distribution of the SCCs
visible. The therapeutic performance of the SCCs is
substantially improved by introducing other modalities
through covalent and noncovalent methods, which pro-
vide potential ways to overcome drug resistance. The
solubility and stability of the SCCs in physiological
media are the main obstacles for their in vivo uses, which
can be effectively solved by the introduction of organ-
ometallic units into the supramolecular scaffolds and
www.sciencedirect.com
nanotechnology. The pharmacokinetic behaviors
including circulation halftime and tissue distributions
are optimized by the formation of nanoformulations,
greatly improving their antitumor performances and
avoiding systemic toxicity, which paves the way for their
clinic translation.
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