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ABSTRACT: The separation of benzene and cyclohexane is one of the most challenging tasks in the petrochemical field. However,
conventional separation methods suffer from cumbersome operation, huge energy expenditure, or use of entrainers. Herein, we
develop an environmentally friendly and energy saving adsorptive separation strategy using nonporous adaptive crystals of a
hybrid[3]arene (1). Adaptive 1 crystals separate benzene from an equimolar benzene/cyclohexane mixture with a purity of 97.5%.
The selectivity comes from the stability and variability of the new crystal structure upon capture of the preferred guest, benzene.
Moreover, reversible transformations between the nonporous guest-free structure and the guest-containing structure make 1 highly
recyclable.

Over the past decades, the separation of benzene (Bz) and
cyclohexane (Cy) is classified as one of the most

challenging tasks in the chemical and petrochemical indus-
tries.1 Bz, as a very important petrochemical product, is a
generally identified volatile organic compound with tremen-
dous industrial and environmental significance.2 Cy is not only
an important feedstock for varnishes, resins, and nylon fibers
but also the raw material for producing cyclohexanol,
caprolactam, cyclohexanone, etc.3 In the chemical industry,
Cy is mainly obtained from the catalytic hydrogenation of Bz.4

It is of paramount importance to remove the unreacted Bz
from the reactor’s effluent stream for high-purity Cy. However,
the separation of Bz from Cy is extremely difficult due to their
similar physical properties.5 The slight difference in boiling
points (only 0.6 K) between Bz (353.25 K) and Cy (353.85 K)
and azeotrope formation make them almost impossible to
separate via a traditional distillation process. Currently, the
dominant industrial methods for separation of Bz/Cy mixtures
are extractive distillation and azeotropic distillation.6 However,
these options require high energy, accompanied by process
complexity and high operating costs. Therefore, it is necessary
and desirable to develop easy operation and more energy
efficient methods to separate Bz and Cy.
By exploiting the differences of Bz and Cy in molecular sizes

and geometries, adsorptive separation through ordered porous
materials has been an efficient alternative separation method.7

For example, metal−organic frameworks (MOFs) have been
experimentally investigated for the adsorptive separation of Bz
and Cy.8 However, it is challenging in the design and synthesis
of suitable MOFs because their molecular sizes are very close.
Moreover, MOFs, constructed by reversible metal−ligand
bonds, are not stable enough for practical recycling
application.9 Therefore, the development of new stable and
recyclable adsorbents for efficient separation of Bz and Cy is
urgently needed.
Recently, our group has demonstrated pillar[n]arene-based

nonporous adaptive crystals (NACs) for separating hydro-

carbons with good performance.10,11 NACs are nonporous in
the initial crystalline state, but their intrinsic or extrinsic
porosity can be induced by specific vaporized species through
supramolecular interactions, thus generating voids to capture
guest molecules. These unique characteristics make them a
new class of adsorptive separation materials that function at the
supramolecular level.12 However, the separation of Bz and Cy
cannot be achieved by nonporous adaptive perethylated
pillar[5]arene or perethylated pillar[6]arene crystals.11c Here-
in, for the first time, we utilized nonporous hybrid[3]arene (1)
crystals as adsorptive separation materials to realize the
successful separation of Bz and Cy (Figure 1). We found
adaptive 1 crystals separated Bz from a Bz/Cy equimolar
mixture with a purity of 97.5%. The selectivity comes from the
stability and change of the new crystal structure upon capture
of the preferred guest. Furthermore, the adsorbed Bz was
removed simply by heating, making these crystals recyclable
without losing performance.
Hybrid[3]arene 1, a novel macrocycle recently reported by

us, was successfully synthesized by the one-step reaction of
4,4′-biphenol diethyl ether, 1,3,5-trimethoxybenzene, and
paraformaldehyde in the presence of trifluoroacetic acid
(TFA) as the catalyst (Scheme S1).13 Activated crystalline 1
(1α) was recrystallized from acetone and dried under vacuum
at 150 °C overnight. 1H NMR (Figure S1) and thermogravi-
metric analyses (TGA, Figure S2) verified that the solvent was
removed. As suggested by powder X-ray diffraction (PXRD,
Figure S3), 1α was crystalline. A N2 sorption experiment
showed 1α was nonporous, with a BET surface area of 0.900
m2/g (Figure S4).
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Despite its nonporous character, the capture capacity of 1α
for Bz and Cy was evaluated by vapor sorption isotherms
(Figure 2a). 1α took up Bz when the vapor pressure exceeded

a certain value (P/P0 = 0.6, Figure 2a, solid red triangles),
suggesting a gate-opening behavior. However, 1α adsorbed a
negligible amount of Cy even though P/P0 reached 1.0 (Figure
2a, solid blue squares). More interestingly, in the desorption
process, only a small amount of adsorbed Bz in 1α was released
at the beginning (Figure 2a, blank red triangles). The final
adsorbed dose of Bz left in 1α was 23.1 cm3/g. In contrast,
most Cy molecules were released under reduced pressure
(Figure 2a, blank blue squares). These results suggested the
stable storage of Bz in 1α.

1H NMR spectra and TGA experiments were carried out to
investigate the adsorption capacity of Bz and Cy in 1α. As
shown in Figure S9, 1α reached the saturation point after 10 h.
The adsorption amount of Bz was about one Bz/1 at saturation
(Figure S7), while the uptake of Cy for 1α could be neglected
(Figures S8 and S10). TGA of 1α showed a weight loss of
10.9% at 100 °C after adsorption of Bz vapor for 12 h,
demonstrating that one 1 molecule contained one Bz molecule
(Figure S11). However, there was nearly no weight loss of 1α
before 200 °C after adsorption of Cy vapor for 12 h (Figure
S12). These results showed that 1α captured Bz, but not Cy.
The mechanism behind the uptake of Bz or Cy vapor was then
investigated by PXRD experiments. Significantly, the PXRD
pattern of 1α did not change after adsorption of Cy vapor but
did change after capture of Bz vapor (Figure 2b), meaning that
the formation of a new structure of 1 occurred after adsorption
of Bz.
To reveal the mechanism of the adsorption of 1α, single

crystals of Bz@1 were obtained by slow evaporation of a
solution of 1 in Bz (Figure 3). In the Bz@1 crystal structure, 1
became distorted. In addition, the distorted 1 molecules were
arranged in infinite channels. Surprisingly, Bz molecules were
not in the cavities of 1 molecules, but located in the self-
assembled pores and sandwiched by two adjacent 1 molecules.
The main driving forces came from multiple C−H···π and C−
H···O interactions (C−H···π distances: 2.712 Å, 2.932 Å,
2.651 Å; C−H···O distance: 2.982 Å; Figures S14−S16). The
selectivity of 1α for Bz was ascribed to the formation of a
highly stable crystal structure after adsorption of the guest
molecule.12b Additionally, the PXRD pattern of 1α after
capture of Bz was consistent with that simulated from the
crystal structure of Bz@1, indicating that the crystal structure
transformed from 1α to Bz@1 upon capture of Bz (Figure
S13).
Based on the sorption ability, we wondered whether 1α

could separate Bz/Cy mixtures. A time-dependent solid (1α)−
vapor (from an equimolar Bz/Cy mixture) sorption experi-
ment was carried out. As shown in Figure 4a, the adsorption
amount of Bz in 1α increased with time. It took about 7 h to
reach saturation. However, the adsorption amount of Cy in 1α
was negligible. These results indicated that 1α adsorbed Bz
with a high selectivity, but not Cy. At the saturated adsorption
point, the adsorption amount of Bz was determined as nearly
one Bz/1 (Figure 4a), consistent with the above-mentioned
single-component sorption experiment with Bz vapor in 1α
(Figures S7 and S9). Gas chromatography determined the
percentage of Bz adsorbed by 1α to be 97.5%, confirming the
high selectivity of 1α over Bz (Figures 3b and S18), and the
PXRD pattern of 1α totally changed upon uptake of the Bz/Cy
mixture vapor but was consistent with the pattern of 1α after
adsorption of Bz and the simulated pattern based on single-
crystal data of Bz@1 (Figure 4c). The above results indicated
that 1α as a nonporous crystalline material selectively adsorbs

Figure 1. Chemical structures: (a) hybrid[3]arene 1; (b) benzene
(Bz); and cyclohexane (Cy).

Figure 2. (a) Vapor sorption isotherms of 1α toward Bz (red
triangles) and Cy (blue squares). Solid symbols: adsorption. Open
symbols: desorption. (b) PXRD patterns of 1α after being exposed to
Bz and Cy.
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Bz from the Bz/Cy mixture, transforming the structure of 1α
into Bz@1 (Figure 4e).
In the real production, recycling capacity is a vital criterion

for assessing an adsorbent. We proved that heating Bz@1 at
100 °C under vacuum removed adsorbed Bz and generated
new crystals (Figures S19 and S20). In fact, the newly formed
crystals were 1α, as indicated by PXRD (Figure S21).
Moreover, the newly formed 1α was still able to selectively
adsorb Bz from mixtures of Bz and Cy without losing
performance after recycling 10 times (Figure 4d).
In summary, we have developed a new method to fully

separate Bz from mixtures of Bz and Cy using nonporous
adaptive crystals of a hybrid[3]arene (1α) for the first time.
Furthermore, this work is the first example of hybridarene-
based NACs used to separate hydrocarbons. We found 1α
separates Bz from a Bz/Cy equimolar mixture with a purity of
97.5%, indicating that 1α is an excellent material for this
separation. The selectivity mostly arose from the stability and
variability of the newly formed crystal structure after
adsorption of the preferred guest molecule. Moreover, the
reversible transformations between the nonporous guest-free

structure and the guest-containing structure made 1 highly
recyclable. In view of the simple synthesis, high separation
efficiency, and outstanding recycling performance of crystalline
1, this material possesses enormous potential for applications
in the chemical industry. Future investigations will concentrate
on producing various adaptive crystals of hybridarenes to
realize more demanding adsorptive separation processes, such
as gases, configurational isomers, isotopes, and chiral
compounds.
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