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Enhanced Antitumor Efficacy by a Cascade of Reactive Oxygen
Species Generation and Drug Release
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Hongzhang Deng, Zhimei He, Yuan Liu, Zhi-Yi Chen,* and Xiaoyuan Chen*

Abstract: Reactive oxygen species (ROS) can be used not only
as a therapeutic agent for chemodynamic therapy (CDT), but
also as a stimulus to activate release of antitumor drugs,
achieving enhanced efficacy through the combination of CDT
and chemotherapy. Here we report a pH/ROS dual-responsive
nanomedicine consisting of p-lapachone (Lap), a pH-respon-
sive polymer, and a ROS-responsive polyprodrug. In the
intracellular acidic environment, the nanomedicine can realize
pH-triggered disassembly. The released Lap can efficiently
generate hydrogen peroxide, which will be further converted
into highly toxic hydroxyl radicals via the Fenton reaction.
Subsequently, through ROS-induced cleavage of thioketal
linker, doxorubicin is released from the polyprodrug. In vivo
results indicate that the cascade of ROS generation and
antitumor-drug release can effectively inhibit tumor growth.
This design of nanomedicine with cascade reactions offers
a promising strategy to enhance antitumor efficacy.

Introduction

Reactive oxygen species (ROS) play important roles in
biological processes; however, high levels of ROS can cause
oxidative damage to cellular biomolecules (for example,
lipids, proteins, DNA), resulting in cell death.! Over the past
decades, ROS-based strategies have shown great promise in
cancer treatment.”] Photodynamic therapy (PDT), which
employs photosensitizers to generate ROS under light
activation, is a widely considered strategy for ROS-based
tumor treatment.’! However, traditional PDT suffers from
limited light penetration depth, restricting PDT to superficial
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tumors.! Compared to PDT, chemodynamic therapy (CDT)
is an emerging therapeutic strategy that exploits biochemical
reactions to generate ROS for tumor-cell killing.”! For
example, the Fenton reaction is an iron-mediated reaction
that can increase the ROS level by converting less-reactive
hydrogen peroxide (H,O,) into hydroxyl radicals with sig-
nificantly stronger oxidation capability.®! Therefore, CDT can
avoid the above-mentioned disadvantage of PDT by exclud-
ing the need for external stimuli and can be used as an
alternative strategy to traditional PDT.

ROS can be used not only as a therapeutic agent for CDT,
but also as a stimulus to activate other treatment processes,
achieving additive and even synergistic efficacies through the
combination of CDT and other therapies. For example, ROS-
responsive linkers, such as the diselenide bond, phenylboronic
ester, peroxalate ester, and thioketal bond, have been ex-
plored to develop nanomedicines for antitumor-drug deliv-
ery.”! Triggered by ROS, the linkers are prone to be rapidly
cleaved, enabling on-demand drug release. ROS-responsive
nanomedicines offer higher selectivity than the commonly
used pH- and glutathione-responsive nanomedicines because
the ROS level in normal cells is relatively low.®! The two
major methods to load drug molecules are physical encapsu-
lation and chemical conjugation. However, encapsulated
nanomedicines usually have unsatisfactory stability, resulting
in inevitable drug leakage. To address this issue, polyprodrugs
have been considered as an alternative strategy.”! By con-
jugating therapeutic drugs to polymer backbones through
responsive linkers, polyprodrugs enable high drug-loading
stability.""” Therefore, the development of polyprodrug-based
nanomedicines capable of ROS generation and ROS-trig-
gered drug release is a promising strategy to combine CDT
with activated chemotherapy.

Herein, we report a pH/ROS dual-responsive nanomedi-
cine that can achieve the cascade of ROS generation and
antitumor-drug release. As shown in Figure 1, two types of
amphiphilic polymers, pH-responsive poly(ethylene glycol)
(PEG)-block-poly  diisopropylaminoethyl = methacrylate-
block-poly dopamine (PEG-PDPA-PDA) and ROS-respon-
sive PEG-block-poly thioketal doxorubicin (DOX) prodrug
(PEG-PtkDOX), were synthesized to form nanomedicines
(NMs) as well as encapsulate B-lapachone (Lap) and ferric
ions (Fe*"). The as-prepared pH/ROS dual-responsive nano-
medicine (denoted as PtkDOX-NM) can achieve effective
tumor accumulation via the enhanced permeability and
retention (EPR) effect. Thereafter, in the intracellular acidic
environment, the pH-triggered hydrophobic-to-hydrophilic
transition of PDPA segments leads to disassembly of the
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Figure 1. Schematic illustration showing the cascade of ROS genera-
tion and drug release. a) The nanosized PtkDOX-NMs can accumulate
in tumor tissue via the EPR effect. b) In the acidic endosome environ-
ment, due to the pH-induced hydrophobic-to-hydrophilic transition of
the PDPA segments, the PtkDOX-NMs can realize pH-triggered
disassembly and rapid release of Lap. c) The released Lap can generate
H,0,. d) In the presence of iron ions, highly toxic hydroxyl radicals can
be produced through the Fenton reaction, resulting in amplified ROS
level inside cells. e) The produced hydroxyl radicals can further trigger
antitumor-drug release for chemo/chemodynamic combination thera-

py-

PtkDOX-NMs and rapid release of Lap.''! Nicotinamide
adenine dinucleotide (phosphate):quinone oxidoreductase
1 (NQO1), which is overexpressed in tumor cells, catalyzes
the generation of H,O, through futile redox cycles of Lap.!*”
H,O0, is further converted into highly toxic hydroxyl radicals
via the Fenton reaction. The hydroxyl radicals can cause not
only oxidative damage to tumor cells, but also promote DOX
release from the polyprodrug through ROS-induced cleavage
of the thioketal linker. The PtkDOX-NMs show the following
distinct features: i) the polyprodrug allows high loading
stability; ii) Lap realizes tumor-specific intracellular ROS
generation; iii) the cascade of ROS generation and antitumor-
drug release achieves enhanced antitumor efficacy through
chemo/chemodynamic combination therapy.

Results and Discussion

The monomers containing thioketal linker (M1 and M2)
were first synthesized (Supporting Information, Scheme S1).
A similar monomer without the thioketal linker (M3) was also
synthesized and used as a non-responsive control (Supporting
Information, Scheme S2). Then the polymers were synthe-
sized through reversible addition fragmentation chain trans-
fer polymerization.'®! Subsequently, DOX was conjugated to
the polymers to obtain the amphiphilic polyprodrugs, ROS-
responsive PEG-PtkDOX and non-responsive PEG-PDOX
(Supporting Information, Schemes S3 and S4). The pH-
responsive polymer containing dopamine groups, PEG-
PDPA-PDA, was also synthesized (Supporting Information,
Scheme S5). NMR spectroscopy and gel permeation chroma-
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tography results confirmed the successful synthesis of the
monomers and polymers (Supporting Information, Figur-
es S1-S11). In the absorption spectra of PEG-PtkDOX and
PEG-PDOX, the typical absorbance peak of DOX at a wave-
length of 480 nm was observed, indicating the successful
conjugation of DOX to form the polyprodrugs (Supporting
Information, Figure S12). According to the standard curve,
the DOX content of PEG-PtkDOX was 44.4 % (Supporting
Information, Figure S13).

Then the PtkDOX-NMs with spherical morphology and
a diameter of around 60 nm were prepared by coassembly of
PEG-PtkDOX and PEG-PDPA-PDA (Figure 2a). The Lap
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Figure 2. a) Transmission electron microscopy image of the PtkDOX-
NMs. b) Effective particle diameter of the PtkDOX-NMs determined by
dynamic light scattering. c) Absorption spectra of different samples
with MB in the absence or presence of H,0,. d) In vitro release
profiles of DOX from PDOX-NMs and PtkDOX-NMs in the absence or
presence of H,0,.

was encapsulated into the hydrophobic core of the nano-
micelle; while ferric ions were chelated by DOX and
dopamine groups through non-covalent coordination inter-
actions. The hydrodynamic diameter of PtkDOX-NMs was
76.9+15.9 nm (Figure 2b). Moreover, the PtkDOX-NMs
showed good colloidal stability, which made them suitable
for invivo applications (Supporting Information, Fig-
ure S14)." The control group (denoted as PDOX-NMs)
assembled from PEG-PDOX and PEG-PDPA-PDA showed
similar morphology and hydrodynamic diameter to PtkDOX-
NMs (Supporting Information, Figures S15 and S16). Then
the pH-responsiveness of the PtkDOX-NMs to the acidic
environment was evaluated. As shown in Figure S17 in the
Supporting Information, upon incubation at pH 6.0, the
PtkDOX-NMs rapidly disintegrated, indicating the pH-trig-
gered disassembly of the PtkDOX-NMs. This pH-triggered
disintegration of particles accelerated the release of Lap, as
evidenced by the boost release at pH 6.0, which was in sharp
contrast with that at pH 7.4 (Supporting Information, Fig-
ure S18). Then the generation of hydroxyl radicals was
evaluated by using an indicator for hydroxyl radicals. As
shown in Figure 2c¢, in the presence of H,O,, both PtkDOX-
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NMs and PDOX-NMs can lead to a decrease in absorbance of
methylene blue (MB), demonstrating the degradation of MB
by the hydroxyl radicals. To examine the cascade of hydroxyl-
radical generation and drug release, the DOX release
behaviors of PtkDOX-NMs and PDOX-NMs were measured
in vitro (Figure 2d). In the absence of H,O,, the PtkDOX-
NMs showed extremely high stability without obvious drug
leakage. However, 55.2% of DOX was released from
PtkDOX-NMs in the presence of H,O, after 48h of
incubation. In contrast, negligible DOX release was observed
in the PDOX-NMs group. The ROS-triggered DOX release
was attributed to the hydroxyl-radical-induced cleavage of the
thioketal linker (Figure 1).

To investigate the intracellular H,O, generation by Lap,
a NQO1-overexpressing A549 cell line was used. Aftera2h
incubation with Lap, the cells were stained with 2'7-
dichlorofluorescin diacetate (an ROS probe). As shown in
the flow cytometry analysis (Supporting Information, Fig-
ure S19), fluorescence intensities inside cells increased with
increasing Lap concentration, demonstrating that the ROS
level inside cells was significantly increased. However, in the
presence of dicoumarol (a NQOI1 inhibitor), the function of
Lap was blocked (Supporting Information, Figure S20).
Furthermore, the addition of Lap did not have an obvious
impact on the intracellular ROS level of 293T cells, which
express NQO1 at a low level (Supporting Information,
Figure S21). These results demonstrated that the Lap-induced
ROS amplification is dependent on NQOI1. Considering the
NQO1-overexpression in various cancer cells, the Lap-based
system shows high selectivity for cancer cells over normal
cells. Excitingly, the coexistence of Lap and iron ions showed
significantly enhanced oxidation capability (Supporting In-
formation, Figure S22), attributing to the efficient conversion
of H,0, into more active hydroxyl radicals via the Fenton
reaction.

Then the cellular uptake and drug distribution were
investigated on AS549 cells using confocal laser scanning
microscopy (CLSM). As shown in Figure 3, the free DOX
could quickly enter cells and diffuse into the nucleus, resulting

Control Free DOX PtkDOX-NMs PDOX-NMs

Figure 3. CLSM images of A549 cells upon incubation with free DOX,
PtkDOX-NMs, and PDOX-NMs for 6 h. DOX concentration: 10 mgL™".
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in the appearance of strong red fluorescence inside the
nucleus. For the cells treated with PDOX-NMSs, almost no red
fluorescence could be detected in the nuclei, which demon-
strated that DOX was not released from the PDOX-NMs. In
contrast, PtkDOX-NMs-treated cells exhibited obvious DOX
distributions in both the nucleus and the cytoplasm, indicating
ROS-triggered drug release from the PtkDOX-NMs. Then
the antitumor activities of free DOX and the different
nanomedicines were evaluated by methyl thiazolyl tetrazo-
lium assay. The blank nanomedicines without the polyprodrug
(denoted as NMs) were used as control groups. As shown in
Figure 4a, in the absence of Lap, all the nanoformulations
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Figure 4. a) Viability of A549 cells incubated with different samples for
48 h. b) Fluorescence images of A549 cells after treatments (DOX
concentration: 2x107°m) and Calcein AM staining.

showed low cytotoxicities; however, the Lap-loaded nano-
formulations showed obvious antitumor effects. This result
indicated that Lap was critical to the generation of ROS and
the acceleration of drug release. Compared with the Lap-
loaded NMs, the NMs loaded with Lap and Fe’" exhibited
higher cytotoxicity, which was attributed to the conversion of
H,0, to highly toxic hydroxyl radicals. Furthermore, the
ROS-responsive PtkDOX-NMs showed much higher antitu-
mor activity compared with the PDOX-NMs, because of the
cascade of ROS generation and drug release. This chemo/
chemodynamic combination therapy effect was also con-
firmed by a live-cell staining assay. Compared with the control
groups, fewer living cells were observed after the PtkDOX-
NMs treatment, confirming the most potent antitumor
capability of the PtkDOX-NMs (Figure 4b).

The in vivo performance of PtkDOX-NMs was further
investigated by positron emission tomography (PET) imaging
on A549-tumor-bearing mice. Deferoxamine was conjugated
to the PtkDOX-NMs to chelate with the radionuclide
zirconium-89 (*Zr). The decay-correlated PET images of
mice (n=35) intravenously injected with ¥Zr-PtkDOX-NMs
were acquired at different time points postinjection. Upon the
injection of *Zr-PtkDOX-NMs, the tumor signal intensity
gradually increased, indicating effective tumor accumulation
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of the ¥Zr-PtkDOX-NMs (Figure 5a). Quantitative three-
dimensional volume-of-interest analysis was used to measure
the tumor uptake efficiency. The tumor uptake reached the
maximum value of 5.890%IDg' at 24 h postinjection (Fig-

a) 1h 4 h 24 h 48 h 72 h
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Figure 5. a) PET images of mice intravenously injected with *Zr-
PtkDOX-NMs. b) Tumor uptake of the #Zr-PtkDOX-NMs at different
time points (n=5). c) Biodistribution of tumor and primary organs at
72 h postinjection.

ure 5b). Thereafter, the tumor accumulation slightly dropped
t0 4.68 % ID g ! at 72 h time point. The high tumor uptake was
mainly attributed to the prolonged blood circulation and the
EPR effect (Supporting Information, Figure S23). After 72 h
postinjection, the mice were euthanized. The ex vivo biodis-
tribution result measured by using y-counting further con-
firmed the effective tumor accumulation and retention of
¥7r-PtkDOX-NMs (Figure 5c¢).

Encouraged by the outstanding in vivo performance, the
antitumor performance of PtkDOX-NMs was further eval-
uated on AS549-tumor-bearing mice. Free DOX or nano-
medicines were intravenously injected into mice every 3 d.
The mice administrated with free DOX or nanomedicine
exhibited obvious therapeutic effects (Figure 6a). Particular-
ly, compared to other groups, the PtkDOX-NMs showed the
highest inhibition of tumor growth. After 21 d of observation,
the tumors of different groups were collected and weighed.
The average tumor weight of the PtkDOX-NMs group was
only 0.187 g, which was much lower than those of the other
groups (Figure 6b). Moreover, the histological analysis re-
sults further confirmed the most efficient therapeutic effect of
the chemo/chemodynamic combination therapy group (Fig-
ure 6¢ and Supporting Information, Figure S24). This en-
hanced antitumor efficacy was attributed to the cascade of
hydroxyl-radical generation and drug release. It should be
emphasized that the systemic toxicity was remarkably in-
hibited by fully taking advantage of nanotechnology and
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Figure 6. a) Tumor growth curves of the mice treated with different
samples. b) Tumor weights of different groups after treatment.
**p < 0.01, ***p <0.001. c) Hematoxylin and eosin (H&E) analyses of
tumor tissues after different treatments.

rational design, no significant body weight loss or noticeable
organ damage was caused by the treatment of PtkDOX-NMs
(Supporting Information, Figures S25 and S26).

Conclusion

In conclusion, we have developed a nanomedicine con-
sisting of pH-responsive polymer and an ROS-responsive
polyprodrug, in which Lap and ferric ions were loaded. The
nanosized structure and excellent colloidal stability enabled
high tumor accumulation and retention. In acidic intracellular
environment, the nanomedicine could realize pH-induced
disassembly and subsequent Lap release. The H,O, specifi-
cally produced in cancer cells by Lap could be further
converted to highly toxic hydroxyl radicals via the Fenton
reaction, resulting in elevated ROS levels inside cells. The
ROS promoted the release of active DOX through cleavage
of the thioketal linker. Therefore, chemo/chemodynamic
combination therapy could be achieved by the cascade of
ROS generation and drug release. Both in vitro and in vivo
experiments demonstrated the potent antitumor activity and
low systemic toxicity of this nanomedicine. This study
provides a strategy for designing nanomedicine with high
selectivity for cancer cells and enhanced antitumor efficacy.
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